
Chapter 3
Python tutorial +
Processes (part 2) 

IPC Examples
CS 3423 Operating Systems

National Tsing Hua University

1

Python tutorial

CS 3423 Fall 2019
National Tsing Hua University

Python programming language
• What is Python?

• High-level dynamic programming language

• multi-paradigm: procedural, OO, functional, ...

• highly readable, "executable pseudocode"

• What is Python good for?
• General-purpose programming, machine learning

• Quick validation of code ideas

• Algorithms in OS, especially with concurrency

• Friendlier way to try out system calls!! Just type directly

Installation
• Recommended:

• preferably latest (3.7.*), but at least python 3.6,
minimally python 3.*

• Several main ways

• built-in to your system (may be named python3)

• install from www.python.org

• install for Cygwin (Windows only) - text mode

• install Jupyter notebook, use Anaconda distribution

http://www.python.org

Interactive mode
$	python3 
>>>	print('hello') 
hello 
>>>	x	=	3 
>>>	x	+	2 
5 
>>>	y	=	'hello' 
>>>	y	+	'world' 
'helloworld' 
>>>	y[0] 
'h' 
>>>	y[4] 

'o' 
>>>	y[1:] 
'ello' 
>>>	y[1:3] 
'el' 
>>>	y[::-1] 
'olleh' 
>>>	'H'	>	'h' 
False 
>>>	'H'	<=	'h' 
True

Collection data types
• list	

• "dynamically array" of mixed types

• tuple	
• read-only (immutable) version of list

• set	

• unordered collection of immutable items, use union,
intersection, subtraction operators

• dict	

• key-value pairs, think hash tables

Examples of Collection types
#	Lists 
>>>	L	=	[1,	2,	3] 
>>>	L[0] 
1 
>>>	L[1]	=	'Hi' 
>>>	L 
[1,	'Hi',	3] 
>>>	L	+	[6,	7,	8] 
[1,	'Hi'	3,	6,	7,	8] 
#	Tuples 
>>>	T	=	(12,	34,	56) 
>>>	T[2] 
56 

#	Sets 
>>>	A	=	{1,2,3} 
>>>	B	=	{1,3,5} 
>>>	A	&	B 
{1,	3} 
>>>	A	|	B 
{1,	2,	3,	5} 
>>>	A	-	B 
{2}	 
>>>	A	^	B 
{2,	5} 
 

Examples of dict: 
key-value pairs

>>>	d	=	{'Jan':	1,	'Feb':	2,	'Mar':	3} 
>>>	d['Feb'] 
2 
>>>	d['Apr']	=	4 
>>>	d 
{'Jan':	1,	'Feb':	2,	'Mar':	3,	'Apr':	4} 
>>>	'Mar'	in	d 
True 
>>>	'May'	in	d 
False 
>>>	len(d) 
4

Functions
>>>	def	Double(x):				#	defines	a	function 
...					return	x	+	x 
... 
>>>	Double(10)								#	calling	a	function 
20 
>>>	Double('10')						#	on	different	types 
'1010' 
>>>	dbl	=	Double						#	copy	"fn	pointer" 
>>>	dbl(20) 
40 

Generator in Python
• like a function but yield instead of return

• yield means it can resume after yield

• Usage: instantiate, then next()
• def	numgen(): 
				i	=	0 
				while	True: 
								yield	i 
								i	+=	1	

• generator can also be used in for-loop, which
instantiates generator and calls next() automatically

10

>>>	g	=	numgen()	#	instantiate 
>>>	next(g)	#	run	till	yield 
0 
>>>	next(g)	#	run	till	yield 
1 
>>>	next(g) 
2 
>>>

Representation of data structures

• Usually easier to use built-in data type

• Example: tree
• could represent it with tuples  

(root, left, right) recursively

• T = (17, (12, (6, None, None), (14, None, None)),
(35, (32, None, None), (40, None, None)))

• This is "pre-order" (root first)

Code for pre-order generator

12

def	preorder(T):	
				if	not	T:	
								return	
				yield	T[0]	
				for	i	in	preorder(T[1]):	
								yield	i	
				for	i	in	preorder(T[2]):	
								yield	i	

if	__name__	==	'__main__':	
				T	=	(17,	(12,	(6,	None,	None),	(14,	None,	None)),	
												(35,	(32,	None,	None),	(40,	None,	None)))	
				L	=	[i	for	i	in	preorder(T)]	#	list	comprehension	
				print(L)

$	python3	tree.py	
[17,	12,	6,	14,	35,	32,	40]

yield from
• in case of recursive call or another

generator, simply do "yield from" instead
of a for-loop to yield each item!

13

def	preorder(T):	
				if	not	T:	
								return	
				yield	T[0]	
				for	i	in	preorder(T[1]):	
								yield	i	
				for	i	in	preorder(T[2]):	
								yield	i

def	preorder(T):	
				if	not	T:	
								return	
				yield	T[0] 

				yield	from	preorder(T[1]) 

				yield	from	preorder(T[2])

IPC Examples
• Shared memory

• POSIX

• Message Passing
• Mach IPC

• Pipes

• Sockets

• Remote procedure calls

14

POSIX Shared Memory IPC
• Include files

• #include	<sys/mman.h>	

• #include	<fcntl.h>	

• shm_open(name,	flag)		

• open a shared-memory object with given name, similar to file

• returns a file descriptor (nonnegative int)

• ptr=mmap(addr,len,prot,flags,fd,offset)	

• map the opened file descriptor for the shared memory object
to the address region that you want

15

POSIX shared memory example
(from textbook).. for producer

16

*/

replace with
#include	<sys/mman.h>	
#include	<unistd.h>

on Linux, compile with flag at end  
$	cc	shm_p.c	-o	shm_p	-lrt

POSIX shared memory example
(from textbook).. for consumer

17

*/

replace with
#include	<sys/mman.h>	
#include	<unistd.h>

on Linux, compile with flag -lrt at the end  
$	cc	shm_c.c	-o	shm_c	-lrt

To run,  
$./shm_p	&	 
$./shm_c	&

Producer-Consumer example
using POSIX shared memory

18

#include	<stdio.h>	
#include	<stdlib.h>	
#include	<string.h>	
#include	<fcntl.h>	
#include	<sys/mman.h>	
#include	<unistd.h>	
#include	<sys/stat.h>	
#define	BUFFER_SIZE	10	
const	int	SIZE	=	4096;	
const	char	*name	=	"OS"; 

typedef	struct	shm_struct	{	
				int	in_p,	out_p;	
				char	buffer[BUFFER_SIZE];	
}	shm_struct_type; 
 
int	shm_fd;	
shm_struct_type	*ptr; 
char	make_item()	{	
				static	char	c	=	'A';	
				if	(c	>	'Z')	{	
								c	=	'A';	
								printf("make	newline\n");	
								return	'\n';	
				}	
				printf("make	%c\n",	c);	
				return	c++;	
} 
void	use_item(char	c)	{	
				printf("consume	%c\n",	c);	
}

void	producer()	{	
				shm_fd	=	shm_open(name,	O_CREAT	|	O_RDWR,	0666);	
				ftruncate(shm_fd,	SIZE);	
				ptr	=	(shm_struct_type*)mmap(0,	SIZE,	PROT_WRITE	|	PROT_READ,	  
																																	MAP_SHARED,	shm_fd,	0);	
				ptr->in_p	=	ptr->out_p	=	0;	
				while	(1)	{	
								char	next_produced	=	make_item();	
								while	(((ptr->in_p+1)%	BUFFER_SIZE)	==	ptr->out_p)	{/*	yield*/	}	
								ptr->buffer[ptr->in_p]	=	next_produced;	
								ptr->in_p	=	(ptr->in_p	+	1)	%	BUFFER_SIZE;	
				}	
}	
void	consumer()	{	
				shm_fd	=	shm_open(name,	O_RDWR,	0666);	
				ptr	=	(shm_struct_type*)mmap(0,	SIZE,	PROT_WRITE	|	PROT_READ,	  
																																	MAP_SHARED,	shm_fd,	0);	
				while	(1)	{	
								while	(ptr->in_p	==	ptr->out_p)	{	/*	yield	*/	}	
								char	next_consumed	=	ptr->buffer[ptr->out_p];	
								ptr->out_p	=	(ptr->out_p	+	1)	%	BUFFER_SIZE;	
								use_item(next_consumed);	
				}	
				shm_unlink(name);	
}

int	main(int	argc,	char	**argv)	{	
				if	(fork())	{	/*	parent	*/	
								printf("producer\n");	
								producer();	
				}	else	{	
								printf("consumer\n");	
								consumer();	
				}	
}

But... is shared memory between
processes an overkill?

• Do you really need two processes (or
threads) just to do producer-consumer?
• seems very unstructured! very hard to trace

• how would you debug?

• Or is there a more structured way?
• some "factory" object that can be invoked

repeatedly to give a series of data objects?

19

C: function with a static variable
• static local variable

• like global (one instance)  
except name is locally visible only

• static	char	c	=	'A' initialized only once at start of program,  
not every time the function is called!

• c is the value to return next time; or if c	>	'Z' then return a
newline and wrap around to 'A'

• Problems
• only one instance of make_item() can be used! since there is

only one static local c

• hard to generalize to more complex items

20

char	make_item()	{	
				static	char	c	=	'A';	
				if	(c	>	'Z')	{	
								c	=	'A';	
								printf("make	newline\n");	
								return	'\n';	
				}	
				printf("make	%c\n",	c);	
				return	c++;	
}

Python solution: Generator
• generator in Python

• a function that can yield and
resume after the yield

•

21

char	make_item()	{	
				static	char	c	=	'A';	
				if	(c	>	'Z')	{	
								c	=	'A';	
								printf("make	newline\n");	
								return	'\n';	
				}	
				printf("make	%c\n",	c);	
				return	c++;	
}

def	make_item():	
				import	string 
				while	True:	
								for	c	in	string.ascii_uppercase+'\n':	
												yield	c		#	instead	of	return!!!

C version
Python version

>>>	m	=	make_item()	#	instantiate	generator	
>>>	next(m)									#	run	from	beginning	till	yield	
'A'	
>>>	[next(m)	for	i	in	range(27)]	#	keep	resuming	till	yield	
['B',	'C',	'D',	'E',	'F',	'G',	'H',	'I',	'J',	'K',	'L',	'M',	
'N',	'O',	'P',	'Q',	'R',	'S',	'T',	'U',	'V',	'W',	'X',	'Y',	
'Z',	'\n',	'A']

Producer-Consumer with Python
generator

• Consumer can use a for-loop

•  

• That's it! very clean structure, easy to understand

• for-loop instantiates the generator and calls next() for you!!

• Synchrony

• this is a form of rendezvous synchronization  
=> producer and consumer alternate till one cannot run any
more (to wait for the other)

• issue: no parallelism; not making and using item at same time!

22

def	consumer(): 
				for	i	in	make_item():	
								use_item(i)

two-way communication in
Python generators

• caller can use g.send(v) to send a value

• generator receives it as yield expression's value

• next(g) must be called at least once initially

23

def	gennum(initval): 
				while	True: 
								r	=	yield	initval	
								if	type(r)	==	int: 
												initval	+=	r 
								else: 
												initval	+=	1

>>>	g	=	gennum(10)	#	instantiate	
>>>	next(g)	#	start	g;	can't	send()	
10	
>>>	next(g)	#	same	as	g.send(None)	
11	
>>>	g.send(5)	#	received	by	yield	
16	
>>>	next(g)	#	same	as	g.send(None)	
17	
>>>	g.send(5)	
22

Pipes
• one of the first IPC mechanisms in early Unix

• Pipe is accessed like a special type of file

• Use file API for reading writing, but no random access

• Issues with implementation

• unidirectional or bidirectional?

• half duplex or full duplex?

• is there a parent-child relationship?

• over the network or reside on same machine?

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 62

Pipes
� One of the 1st IPC mechanism in early UNIX systems
� Pipe is a special type of file
� Issues in implementing

¾ uni- or bi-directional?
¾ half or full duplex? (travel in both directions

simultaneously)
¾ Must a relationship (parent – child) exist?
¾ Over a network, or reside on the same machine?

Read
-end

write
-end

24

Ordinary Pipes
• Also called anonymous pipes in Windows

• Requires parent-child relationship between
communicating processes
• implemented as a special file on Unix (via fork())

• child process inherits open files from parent

• can only be used between processes on same machine

• Unidirectional (simplex)
• two pipes must be used for two-way communication

• Unix: int	fd[2];	pipe(fd);

• Windows: CreatePipe(&ReadHandle,	&WriteHandle,	&sa,	0);

25

pipe example in C from textbook

26

#include	<sys/types.h>	
#include	<stdio.h>	
#include	<string.h>	
#include	<unistd.h>	
#include	<stdlib.h>	

#define	BUFFER_SIZE	25	
#define	READ_END	0	
#define	WRITE_END	1	

int	main(void)	{	
				char	write_msg[BUFFER_SIZE]	=	"Greetings";	
				char	read_msg[BUFFER_SIZE];	
				int	fd[2];	
				pid_t	pid;	

				/*	create	the	pipe	*/	
				if	(pipe(fd)	==	-1)	{	
								fprintf(stderr,	"Pipe	failed\n");	
								exit(1);	
				}

				pid	=	fork();	
				if	(pid	<	0)	{	
								fprintf(stderr,	"Fork	Failed\n");	
								exit(2);	
				}	
				if	(pid	>	0)	{	//	parent	
								close(fd[READ_END]);	
								write(fd[WRITE_END],	write_msg,	strlen(write_msg)+1);	
								close(fd[WRITE_END]);	
				}	else	{	
								close(fd[WRITE_END]);	
								read(fd[READ_END],	read_msg,	BUFFER_SIZE);	
								printf("read	%s",	read_msg);	
								close(fd[READ_END]);	
				}	
}	

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 62

Pipes
� One of the 1st IPC mechanism in early UNIX systems
� Pipe is a special type of file
� Issues in implementing

¾ uni- or bi-directional?
¾ half or full duplex? (travel in both directions

simultaneously)
¾ Must a relationship (parent – child) exist?
¾ Over a network, or reside on the same machine?

Read
-end

write
-end

pipe example in Python

27

import	os	

def	make_item():	
				import	string	
				while	True:	
								for	c	in	string.ascii_uppercase	+	'\n':	
												yield	c	

def	use_item(c):	
				print("consume	%c"	%	c)	

def	producer():	
				item_gen	=	make_item()	#	instantiate	generator	
				w	=	os.fdopen(write_fd,	'w')	
				while	True:	
								next_item	=	next(item_gen)	
								w.write(next_item)	
				os.close(write_fd)

def	consumer():	
				r	=	os.fdopen(read_fd,	'r')	
				while	True:	
								next_item	=	r.read(1)	
								print("read	%c"	%	next_item)	
				os.close(read_fd)	

if	__name__	==	'__main__':	
				#	create	the	pipe	
				read_fd,	write_fd	=	os.pipe()	
				pid	=	os.fork()	
				if	(pid	>	0):										#	parent	
								os.close(read_fd)		#	close	the	read	
								producer()	
				else:																		#	child	
								os.close(write_fd)	#	close	the	write	
								consumer()

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 62

Pipes
� One of the 1st IPC mechanism in early UNIX systems
� Pipe is a special type of file
� Issues in implementing

¾ uni- or bi-directional?
¾ half or full duplex? (travel in both directions

simultaneously)
¾ Must a relationship (parent – child) exist?
¾ Over a network, or reside on the same machine?

Read
-end

write
-end

Named Pipes
• No parent-child relationship is required

• Several processes can use it for communication

• may have several writers

• Continue to exist after process terminates

• Unix

• also called FIFO, must be on same machine

• Windows

• bidirectional, can be on different machines

28

Sockets
• unstructured stream of bytes

• Low-level form of communication

• as opposed to fixed-sized packets or struct or text
with syntax 
=> client and server need to agree on format

• HTTP example

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 49

Sockets
� Considered as a low-level form of communication

unstructured stream of bytes to be exchanged
� Data parsing responsibility falls upon the server and

the client applications

Server
Socket

(161.25.19.8:80)

Client
Socket

(146.86.5.20:1625)

HTTP/1.1 200 OK
Date: Mon, 23 May 2005 22:38:34 GMT
Server: Apache/1.3.3.7
Last-Modified: Wed, 08 Jan 2003 23:11:55 GMT

GET /index.html HTTP/1.1
Host: www.example.com

HTTP example:

29

Sockets
• A socket is identified by concatenating

• IP address : port number

• e.g., 127.0.0.1:8080

• Communication is between a pair of sockets

• Localhost

• IPv4 address (32-bit) 127.0.0.1

• IPv6 address (64-bit) is ::1, which is short for
0000:0000:0000:0000:0000:0000:0000:0001

30

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 48

Sockets
� A socket is identified by a

concatenation of IP address
and port number

� Communication consists
between a pair of sockets

� Use 127.0.0.1 to refer itself

Server
(161.25.19.8)

Socket
(161.25.19.8:80)

Client
(146.86.5.20)

Server
(161.25.19.8)

socket()

bind()

listen()

accept()

read()

close()

socket()

connect()

write()

close()

Block until client requests

write() read()

Well-known port
161.25.19.8:80

Data req.

Data reply

Assign port
146.86.5.20:1625

Client
(146.86.5.20)

Socket
(146.86.5.20:1625)

Sockets

assign port
146.85.5.20:1625

31

Socket: client
• import socket # in Python

• s = socket.socket() #create a socket obj

• s.connect(addr, port) # connect to server

• s.recv(nBytes)

• s.send(data)

• s.close() # close the connection

32

Socket: server
• s = socket.socket() #create a socket object

• s.bind((addr, port)) # bind socket to addr, port

• s.listen(nMaxConn) # wait for client to connect

• Loop over multiple incoming connections c
• c = s.accept() # get socket object and address

• c.send(data)

• c.recv(nBytes)

• c.close() # close the connection

33

Python code to test sockets

34

import	socket	

host	=	socket.gethostbyname('localhost')	
port	=	12345	

s	=	socket.socket()	
s.connect((host,	port))	
s.send(bytes('Hi!		I	am	the	client	\ 
making	a	request!',	'utf8'))	
resp	=	s.recv(1024)	
print('response	from	host:	%s'	%	resp)	
s.close()

import	socket	

host	=	socket.gethostbyname('localhost')	
port	=	12345	

s	=	socket.socket()	
s.bind((host,	port))	
s.listen(5)	

while	True:	
				c,	client	=	s.accept()	
				req	=	c.recv(1024)	
				print('from	%s,	requesting	%s'	%	\ 
										(client,	req))	
				reply	=	'response	from	server:	your	address	\ 
is	%s,	your	request	%s'	%	(client,	req)	
				c.send(bytes(reply,	'utf8'))	
				c.close()

Compare with Java version in textbook, Fig. 3.27-3.28

client.py server.py

Remote Procedure Calls (RPC)
• Allows a program to call procedures on

another machine
• looks like a procedure call to a program

• in reality, the call executes on another host

• Stub: proxy for the RPC on client and
server

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 50

Remote Procedure Calls: RPC
� Remote procedure call (RPC) abstracts procedure

calls between processes on networked systems
¾ allows programs to call procedures located on other

machines (and other processes)
� Stubs – client-side proxy for the actual procedure on

the server

35

Client and Server Stubs
• Client stub

• “marshaling”: packs parameters into a message

• calls OS to send directly to server (network)

• waits for result to return from server (network)

• Server stub
• receives call from a client, “de-marshaling”: unpacks param

• calls the corresponding procedure

• returns results to the caller (network)

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 51

Client and Server Stubs
Client stub:
ͻPacks parameters into a message (i.e. parameter marshaling)
ͻCalls OS to send directly to the server
ͻWaits for result-return from the server

Server stub:
ͻReceives a call from a client
ͻUnpacks the parameters

ͻCalls the corresponding procedure
ͻReturns results to the caller

36

RPC Problems
• Data representation

• integer, floating point?

• Different address spaces
• what is the meaning of pointer?

• Communication error
• duplicate or missing calls

37

RPC problems: data
representation issue

• Problem
• IBM mainframes use EBCDIC char encoding, but

most others use ASCII

• integer: one’s complement vs 2’s complement,
little endian vs big endian

• Floating-point numbers, sizes

• Solution
• external data representation (XDR)

38

RPC problems: Address Space
Issue

• A pointer is only meaningful in address
space

• Solution
• no pointer usage in RPC call

• Copy the entire pointed area (arrays, strings)

• only suitable for bounded and known areas

39

RPC Problems: communication
issue

• RPC may fail or duplicate execution
• due to problem in network

• At most once
• attach timestamp (or sequence number) to each msg

• server must keep a history large enough to ensure repeated msg

• Exact once
• server must acknowledge to client RPC call received &

executed

• client must resend each RPC call periodically until server
receives ACK

40

